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CONSTITUTIVE MODELING OF ROCKS

WITH INTERNAL CRACKS AND PORES

1.0 INTRODUCTION

The brittle deformation processes in materials such as rocks, concretes, ceramics, etc., have

lately attracted a great deal of attention. On the microscale this class of deformation processes

is characterized by the cooperative evolution of a large number of crack-like microdefects of

irregular geometry. The complexity of the problem is further exacerbated by the dependence

of the crack growth and the stiffness on the sign of normal stresses. Early constitutive models

were based on modifications of the venerable plasticity theory originally intended to predict the

behavior of ductile metals. The inability of these models to predict the brittle response of rocks

stimulated efforts to examine the underlying micromechanical processes. Constitutive analy-

sis which captures salient aspects of the micromechanical processes characteristic of particular

materials and applications, which is still reasonably simple, is, therefore, highly desirable.

The early micromechanical models addressed primarily the dependence of elastic moduli on

the microdefect density. Budiansky and O'Connell (1976) considered randomly distributed

flat cracks and applied the self-consistent method to obtain the effective elastic properties of

the overall isotropic response. In this analysis all cracks were supposed to be open during

loading. In the case when some cracks close or undergo frictional sliding, the overall response

becomes anisotropic and load-path dependent (Horii and Nem,.t-Nasser, 1983). Sammis and

Ashby (1986) developed an approximate theory to predict the failure of brittle porous solids,

loaded in compression, during which cracks grow from the surfaces of the preexisting pores or

vacancies. Nemat-Nasser and Obata (1988), in their micromechanical modeling of the inelastic

response of brittle materials such as compact rocks, concrete and some ceramics, used the sliding

crack mechanism as the dominant source of inelasticity. According to this model the frictional

sliding of preexisting cracks leads to the formation of tension wing-cracks (see also Kachanov,

1982, and Ashby and Hallam, 1986). A dilute distribution of preexisting cracks was assumed,

neglecting interaction among neighboring tlaws.

Other mechanisms of microcracking in rocks, such as elastic mismatch and bending mechanisms,

were also suggested. For heterogeneous materials, the local tensile stresses appear at the interface

of two elastically mismatched materials. Tensile stresses resuLing from the unequal lateral

expansion of the mismatched materials are often sufficient to cause nucleation and subsequent
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propagation of a microcrack (Kemeny and Cook, 1991). According to the bending model,

the tensile stress needed to trigger microcrack growth occurs as a result of bending a soft

and elongated particle spanning two harder inclusions. Extensive summaries and reviews on

microcracks in rocks are given by Kranz (1983), Zheng (1989), and others.

The behavior of brittle rocks with inferior tensile strength depends on the mode and stability of

the crack growth. Thus, the response of a brittle rock subjected to compressive loading strongly

depends on the lateral confinement. An unconfined specimen containing a large number of flaws

fails by axial splitting or slabbing (Horii and Nemat-Nasser, 1986). Final failure occurs as a

result of the unstable growth of a single crack of preferential geometry at a relatively small
microcrack density. Thus, the microcrack interaction is relegated to a second-order effect. As

the confinement is increased, axial splitting is suppressed and a typical rock specimen fails by

formation of a narrow region of high crack density (fault or "shear band"). Finally, at large levels

of laterai confinement, homogeneous microcracking prevails throughout the sample, resulting in

a quasi-ductile overall response. The microcrack density (especially within the "shear band"

emerging near the apex of the force-displacement curve) is in this case much more substantial,

rendering microcrack interaction not only important but even the dominant factor of failure. The

degree of confinement at which the mode of failure changes is referred to in rock mechanics as

the brittle-to-ductile transition. This phenomenon was studied by many authors, most recently

by Hirth and Tullis (1989), Wong (1990), and Zhang, et aL (1990a,b).

The micromechanical studies reported in the literature have demonstrated all of the advantages

and disadvantages of micromechanical models. The relative absence cf ambiguity, Jrect identi-

ication of material parameters, and conceptual clarity of micromechanical models are accompa-

nied by a lack of computational efficiency and limitations to simple geometries and homogenous

states of stress. By its very nature the micromechanical determination of the state of damage at

a material point of an effective continuum involves compilation of records defining the growth of

each microcrack within the corresponding representative volume element of the actual material.

The attendant bookkeeping and averaging represents a formidable problem whinh may be re-

dundant since it is not immediately known how detailed the information sought must be. Thus,

as stated by Rice (1975), a direct micromechanical prediction of material response is unlikely

to displace the application-of phenomenological and less rigorously based structure-parameter

models.

Unfortunately, the state of the art of phenomenological modeling is far frcm satisfactory. In the

wake of the original Kachanov model (i958), in which damage was measured by a scalar, different
and contradictory choices of other damage variables were promoted as proper characterizations

of the deterioration of the material properties. Vectorial, second-order, and fourth-order tensor

representations of damage were proposed to capture the damage-induced anisotropy (Vakulenko

and Kachanov, 1971, Dragon and Mroz, 1979, Kachanov, 1980, Krajcinovic and Fonseka, 1981,
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Talreja, 1985, Costin, 1985, Murakami, 1988, Ju, 1989, Kachanov, 1992, etc.). The phenomeno-

logical features of damage mechanics theory, such as damage surface and damage rule, analogous

to yield surface and flow rule of the more developed phenomenological metal plasticity theory,

are still in the early stages of development and are the subject of ongoing active research (Simo

and Ju, 1987, Chow and Wang, 1988, Krajcinovic, 1989, Chaboche, 1992, etc.). Morover, the

relation of these models to the physics of the phenomenon is often less than obvious.

A third class of models makes an attempt to combine the desirable attributes of micromechan-

ical and phenomenological theories. Rudnicki and Rice (1975) treat the onset of rupture in
brittle rock masses as a constitutive instability. Their macroscopic constitut.-o equations are
the pressure-dependent generalization of the Prandtl-Reuss equations of metal plasticity. In-

elastic response, dilatant in nature, was considered to be predominately a consequence of the

frictional sliding on microcrack surfaces, their uplifting over asperities, and tensile cracking into

the crack wings (kinks). Nemat-Nasser and Shokooh (1980) further developed these constitu-

tive equations to account for inelastic volume changes and pressure sensitivity, important in

geotechnical materials such as cohesionless sands and cohesive soils. Ortiz (1985) considered
a constitutive model for the inelastic behavior of concrete, by viewing it as a mixture of two

phases: mortar and aggregate. Simple models were used to describe the individual responses

of mortar and aggregate, and mixture theory was implemented to obtain the overall composite

response. None of the existing models, however, satisfies the contradicting requirements of rigor
and simplicity. Moreover, none of these models was used successfully, if at all, for large-scale

computations or for a general case of loading.

The objective of the present study is neither to recapitulate the current state of micromechan-

ical and phenomenological modeling nor to reconcile all or even most existing theories singling
out those that do not satisfy all conditions. Instead, the ultimate objective is to formulate a

microscopically-inspired continuum model which will be suitable for large-scale computations.

While retaining ms much generality as possible, the proposed model will specifically address the

brittle defor -- n processes in porous sandstone and limestone rocks. Ductile deformation Will

be cousidexeu w . following study. In view of the many competing models, it seems reasonable to

rev;sit the problem from its very start and examine the approcimations related to the representa-

tion of the existing distribution of microcracks by an appropriate tensor measure. Additionally,

the present study will reexamine the mathematical structure of the effective comp'iances and

stiffnesss demonstrating that rigor can be preserved without attendant sacrifices in simplici-

ty. At this point a second-order tensor representation of damage will be considered and the

damage-induced anisotropy will :e approximated by orthotropy. A more complete discussion of

the problem, within the framework formulated herein, including considerations c other types of

anisotropy and exteisions to rate theories, will be presented subsequently.
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2.0 MICROMECHANICS OF BRITTLE DEFORMATION

PROCESSES IN POROUS ROCKS

The word rock refers to a large class of naturally formed solid materials of different structure and

chemical composition. Near the exposed surface, most rocks are weathered and fragmented. The

stresses to which the rocks are exposed in engineering application are often inferior to stresses

developed during their formation or tectonic movements. As a result, a typical rock contains

crack-like defects on a range of scales. From the geological and seismic viewpoint the most

important defects are joints and faults with lengths measured in tens and hundreds of miles.

Our current interest, however, is centered on studying the influence of relatively small defects on

the mechanical response of rock specimens which do not contain joints, tested in the laboratory.

The mechanical response and strength of a rock is to a large degree determined by its microstruc-

ture (or fabric). The fabric of a typical rock encompasses crystal aggregates joined together by

some cementitious material. Preferred crystal orientations, bedding planes, foliation, schistosity,

microfissures, and porosity, common to rocks, are the principal reasons for preferred directions,

anisotropy, and reduction of the mechanical strength (see, for example, Jaeger and Cook, 1976).

As a consequence of their inferior tensile strength rocks are subjected primarily to compressive

loadings in engineering applications. The average (macro) normal stresses are seldom if ever

tensile. However, the local stress fluctuations, attributable to the inhomogeneities in the rock

fabric, will, in general, have tensile components as well. These local tensile stresses ae in most

cases considered to be the principal reason for microcracking. The distribution and magnitude

of these local stresses depends on the shape of the inhomogeneity, elastic mismatch, defect

density, etc. Thus, the determination of the local stress from the average stress requires a
micromechanical study based on the actual rock fabric.

Some of the definitions used in rock mechanics are a direct consequence of the idiosyncrasies of

the deformation process in rocks. The conventional crystal plasticity mechanisms are operative

in low-porosity crystalline rocks only at high temperatures (Evans, et aL, 1990). In all other

cases the inelastic deformation is attributed to the nucleation, propagation, and coalescence of

microcracks into larger clusters. For example, in porous rocks macroscopic ductility reflects

distributed grain-scale crushing and microcracking (Wong, 1990). The mode and stability of

microcracking depends on the ratio of the hydrostatic pressure and deviatoric stress. Thus, the

ductile deformation of porous rocks is dependent on the first invariant of the macrostress tensor

(see Byerlee and Brace, 1969, Jones, 1980, etc.). The ductility of the deformation process is

customarily defined by the character of the functional dependence of the axial strain on the

hydrostatic and deviatoric stresses.

In stress-controlled tests at low confinement the mode of failure is brittle. The onset of failure

is sudden and is not preceeded by significant inelastic strains. In contrast, the much more
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important behavior of rock specimens in confined conditions is rich in details and possibilities. In

crustal conditions the deformation of rocks in the majority of cases is controlled by displacement

constraints (confinement).

Deformation is referred to as being ductile on the macroscale when the increase of the axial strain

in a specimen subjected to constant hydrostatic stress requires increase of the deviatoric stress.

On the microlevel this typically means that the microcrack growth is stable, i.e., that the crack

can grow only if the deviatoric stress is increased. In contrast, if in a displacement-controlled

test the deviatoric stress reaches a maximum and starts declining at increasing axial strain the

response is referred to as being brittle. The corresponding segment of the force-displacement

curve is labeled as "softening". The softening phenomenon is readily explained on the microscale

by the unstable growth of microcrack lengths. Depending on the ratio of the differential stress

to the effective mean stress the ultimate failure at low temperatures can occur as a result of the

localization of microcracks into a "crack (or shear) band" or by cataclastic flow (Paterson, 1978,

Horii and Nemat-Nasser, 1986). The transition between the failure emphasizing inhomogeneous

deformation (localization) and the failure characterized by homogeneous deformation (cataclastic

flow) is referred to as the brittle-to-ductile transition (Rutter and Hadizadeh, 1991, Wong, et

al., 1992, etc.). At high confinement levels the deformation is homogeneous and the ultimate

(or macro) failure takes place when the density of microdefects reaches critical concentration.

2.1. EXPERIMENTAL OBSERVATIONS

Even though the relation between the mode of deformation and microcrack evolution has been

accepted as the dominant aspect of the phenomenon, the experimental data available in the

literature are primarily related to macroscopic observation (Hustrulid and Robinson, 1973, Pa-

terson, 1978, Felice, et a., 1991). The present discussion (based on the literature) is confined to

the low-temperature compression of sandstone rock specimens below the brittle-ductile transi-

tion. In a series of publications, Zhang, et aL. (1989, 1990ab), and Wong (1990) summarized an

ambitions experimental program considering several different sandstone rocks using both nonde-

structive testing methods (Acoustic Emissions - AE) and Scanning Electron Microscope (SEM)

micrographs. A substantial AE activity was characteristic of all samples tested regardless of

the character of their macroscopic brittleness or ductility (Wong, 1990). Thus, by inference, a

specimen is macroscopically brittle if the lateral confinement is insufficient to keep the micro-

crack growth stable. Conversely, if the microcrack growth is stable a specimen is macroscopically

"ductile".

The series of papers listed in the above paragraph identified two major mechanisms of microcrack

nucleation and growth. Hertzian contact stresses between calcite cement and quartz

(elastic mismatch) were identified as the major micromechanical process leading to nurleation

of cracks found in hydrostatically compressed rcndstone samples. The contact rtresses were

determined by modeling the porous rock as a randoz..y packed assemblage of spherical particles.
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Since the contact stress concentrations were highly localized, the initial microcrack length was

found to be very short (ranging from 0.004 to 0.3 mm). The final crack lengths, radiating from

the points of contact, seemed to be up to 1 mm long (see Fig. 6 in Zhang, et al., 1990a).

The second micromechanical mechanism of inelastic rock deformation was attributed to stress

concentrations at the perimeter of voids. Sammis and Ashby (1986) have developed an analytical

model for the latter mechanism based on fracture mechanics considerations, which sufficed for

formulation of relations among the fracture toughness, the porosity, and the stress field (more

specifically the ratio between the confining pressure and the maximum compressive stress).

Additional data regarding the SEM observations of microcrack density are available in Wong, et
al. (1992). The crack densities in two orthogonal directions were determined using conventional

stereological methods (Underwood, 1970, Wong and Biegel, 1985). In hydrostatically-loaded

Berea sandstone specimens, the number of microcracks in two orthogonal planes was almost

identical (with differences accounted for by bedding); however, a marked increase of microcracks
parallel to the maximum compressive stress emerged when a differential stress was added to the

already existing hydrostatic pressure. Thus, the deformation process, reflecting the sequence of

different modes in which the microstructure changes, strongly depends on the manner in which

the loads are applied. In other words, the deformation depends on whether the applied loading

is proportional or not. In the language of applied mechanics, the deformation processes in the

rock are strongly path dependent.

Precise data related to the angular distribution of cracks are even more difficult to find. Hall-

bauer, et al. (1973) carefully examined specimens of argillaceous quartzite and found that the

majority of cracks were oriented within 100 to the compression axis'. Microcracks were rather

short (0.1 to 1 mm in length), intragranular, and confined to single quartz grains. A similar

conclusion was arrived at by Zheng, et al. (1991) who investigated compressive stress-induced

microcracks in limestone. Most microcracks were formed by bending of long beam-like grains.

In the case of large lateral confining stress (34 MPa) the microcracks were reasonably uniformly

distributed over the entire volume of the specimen even in the post-peak regime. At a lateral

confining stress of 17 MPa, localization into a few shear bands became apparent. At zero confin-

ing stress the damage in the post-peak regime was strongly localized into a single crack near the

surface of the specimen parallel to the compressive axis. The rest of the specimen was in this case

almost completely undamaged. According to the data in Zheng, et &.L (1991) the average angle

subtended by microcrack planes and the compressive axis did not exceed 150. The microcrack

density (defined as the number of cracks per unit area) was found to increase, and the microcrack

length decrease, with an increase of confining stress. The crack-width to crack-length aspect

ratio was typically 0.02. Somewhat older data for sandstone and limestone specimens are avail-

able in Swols (1972), Saugha, et al. (1974), Olsson (1974), and Conrad and Friedman (1976).

"See page vii for conversion to SI units.
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Application of acoustic emissions to detect the location and intensity of microcracking in rocks

has been suggested in the recent past by Holcomb and Costin (1986), Holcomb, et al. (1990),

Lockner and Byerlee (1991), Lockner, et al. (1992), and others. According to these data (see

Lockner, et al., 1992) AE clustering was observed in Berea sandstone from the earliest stages

of loading. Initially this clustering was found to be diffuse suggesting that the microcracks can

grow only through Interaction with adjacent defects. The level of localization was found to be

directly proportional to the applied compressive force.

In summary, the available data set, while not complete, suffices to draw a number of impor-

tant conclusions related to the inelastic deformation of sandstones. At low temperatures and

stresses below the crushing level, the inelastic deformation of sandstone specimens is directly

attributable to the nucleation, growth, and stability of microcracks. The specific mechanism

of microcrack nucleation varies with microstructure. The growth of a single microcrack (which

does not interact with other microdefects), generated from a pore, appears to be stable. Thus,

the microcrack interaction problem appears to be instrumertal in micromechanical modeling of

microcrack growth. The distribution of microcrack sizes, shapes, and orientations depends on

the microstructure (sizes of grains, pores, etc.) and the stress field. The brittle-ductile transition

and the final failure mode depend on the level of confinement.

At this point it can be speculated that the available micromechanical data suffice to form the

basis for an analytical model in the case of proportional loading, i.e., as long as the defor-

mation process is dependent on a well documented sequence of dominating micromechanisms.

More specifically, during proportional loading the active microcracks will likely remain active.

Consequently, changes of the effective macroparameters (such as stiffness, elastic moduli, and

accumulated damage) will change gradually and in orderly fashion. This type of problem is,

for simplicity, best handled by deformation-type theories. In the case of non-proportional load-

ings characterized by rotation of the principal stress directions, the available microstructural

experimental data must be appropriately augmented in concert with analyses and macroscopic

observations. In non-proportional loading a group of microcracks which were subjected to ten-

sion may ultimately find themselves in hydrostatic compression. A sudden reversal of their status

from active to passive will result in a discontinuous change of the effective macroparameters.

This class of problems can be handled only by the rate theories.

The intricacies of the brittle-ductile transition and the influence of the rock fabric on this tran-

sition have been discussed in considerable length in the existing literature (see, for example,

Paterson, 1978). Analytical models of this transition are still in their infancy. This is not

surprising since the onset of the brittle-ductile transition depends on the microcrack interac-

tion. The extent of the interaction depends on the distance between pairs of microdefects. The

largest interaction occurs when the distance between two defects is smallest. In ot]er words, it

is the smallest distance rather than the average distance that is of interest. This rather simple

conclusion seems to have been totally ignored in zmost of the literature.
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2.2. CYLINDRICAL PORE MODEL

In porous rocks (such as sandstones and limestones), microcrack nucleation is commonly at-
tributed to the local tensile stresses along the pore circumference. The circumferential (hoop)
normal stresses along the exterior of a single, circular hole of radius R, embedded in a plate of
homogeneous, isotropic, linear elastic material (Fig. 2.1) are

10 R2 R4
= [1+ - (1 + 3T)os28] , for r > R, (2.1)

where o° is the magnitude of the macrostress applied in the direction of the x-axis. From (2.1)
the extreme values of the stresses at the pore perimeter are

,=3° ,fore= r=R
2 (2.2)

oe=-V° ,for 6=0, r=R.

It is trivial to show that the hoop tensile stresses along the pore circumference occur within
the range 1 91< 300. However, the already mentioned observations of Hallbauer, et al. (1973)
on argillaceous quartzite and the Zheng, et al. (1991) measurements on limestone are not

in very good agreement with the results predicted by this simple model. According to their
observations there are no apparent cracks with orientations lar:;er than (beyond) the angle of
9 = 150. However, a crack nucleated in a plane subtending a large angle to the compression
axis will kink and grow along the x-axis (Fig. 2.1). Moreover, the cracks nucleated at 9 = 0,
r = R will, in general, become unstable before the stress near 9 = 300 becomes large enough to
propagate cracks from small notches. Thus, even though some cracks may indeed nucleate from
a notch at an angle close to 0 =300, the average crack density in these planes will be minimal.

y

00r

Figure 2.1. Cylindrical pore of radius B. unier remote compressive stress ao.
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In the case of biaxial compression

a,==-O and a.=-po°, (2.3)

where jo is an arbitrary number, and the tensile stresses vanish for V 2> 1/3. Thus, according to

this simple criterion the microcracks will not nucleate at the perimeter of an isolated cylindrical
pore if V•! 1/3. Introducing the average (hydrostatic) stress p and the deviatoric (differential)
stress q

P=ý(a,+o,), and q= (o.-0,) (2.4)

the local tensile stresses will vanish if the ratio

q= 1- < . (2.5)p 1+• -

The equality sign in (2.5) provides a simpleminded estimate of the brittle-ductile transition
neglecting microdefect interaction, other micromechanical mechanisms, and the three-
dimensional character of the phenomenon.

It is also of interest to consider the stress concentrations in the proximity of two interacting cylin-
drical pores. The available data in Savin (1961) ard Paterson (1978) indicate that the stress
concentrations are decreased by the presence of the second pore. Detailed rigorous analyses were
reported for the case shown in Fig. 2.2 using the elasticity model formulated by Kouris and

y

B

00 A 00

, S

0-O.4:
0.2

Figure 2.2. Two interacting cylindrical pores under remote compressive stress o0.
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Tschucida (1991). The local stresses at points A, B and C are: 0A = 0.90 3 ao , a = -2.59a0o,

and orc- 0.38oro . The corresponding values for a single pore are 1.0 -3.0 , and 1.0 , respec-

tively. However, very near the point C, i.e. at z = 0.41, the matrix is subjected to biaxial
tension a. = 0.90vo and op = 0.36ao . The performed calculations indicate that the second

pore has a shielding effect, and will seldom if ever amplify the stresses determined for a single

hole.

Naturally, the perimeter of a void in rock material is never smooth. The void surface is typically
irregular, containing small notches and fissures. Thus, to determine the stability of the defor-
mation process it is more appropriate to consider a notched void as shown in Fig. 2.3 (Kemeny
and Cook, 1991). When the crack length a is much smaller than the pore radius R, the actual
geometry can be approximated by an edge crack. This edge crack is subjected to the local hoop
stress computed from (2.2). The stress intensity factor for this case is (Rooke and Cartwright,

1976)

KI = 1.12 (o,,- 3o,)vi , a > 3o << R. (2.6)

For longer cracks, Sammis and Ashby (1986) suggested an approximate expression for the stress
intensity factor in the form

1 - 2.1V

K 1 = /• [1.1 (1-+ 33 .0 , (2.7)

where a = aiR. The normalized stress intensity factor oV•R/Kc , where Kc is the critical

stress intensity factor, is plotted in Fig. 2.4 vs. the aspect ratio a = &/IR, for several different

confinement ratios i, = u,/,, • In all cases the maximum stress intensity factor occurs for a < R.

After the stress reaches maximum, the crack growth becomes unstable (for low confinement) in

the sense that the crack length increases for decreasing stress.

Figure 2.3. A notched void of radius R and crack length a.
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Sammis and Ashby (1986) also suggested an approximate expression for the case of interacting

cracks. According to this suggestion the total stress intensity factor can be approximated by

adding an additional term to (2.7)

K{[1 -(1 + a) 3 f] f(1 + W)}1/2 UO0WR (2.8)

reflecting the enhancement attributable to the direct crack interaction. In (2.8), f is used to

denote the initial porosity of the rock.

I• 4 V:=0.005

0
0 2 4 6

Figure 2.4. Nc.-malized stress-intensity factor vs. aspect ratio a/R, for several different con-

imement ratios (.

2.3. BRITTLE-DUCTILE TRANSITION

Using expressions (2.7) and (2.8) the Griffith's stability condition (Kanninen and Popelar, 1985)

can be written as

Kr + K,'r = Kc ,(2.9)

where Kc is the critical stress intensity factor considered to be a material parameter. The

normalized stress needed to propagate the crack can now be written from the three above

11



expressions as a function of the length ratio a = a/R and the degree of the lateral confinement

V > 0. These results (taken from Wong, 1990) are reproduced in Fig. 2.5, and indicate that

confinement as low as V > 0.005 suffices to render the crack stable. This conclusion, however,

contradicts the experimental results referenced in Wong (1990) indicating that the Sammis and

Ashby (1986) model overestimates the stabilizing effect of the lateral confining stresses, i.e.,

that it provides a low estimate of the magnitude of the deviatoric stresses needed to prevent the

brittle failure.

Isida and Nemat-Nasser (1987) performed rigorous computations which indicated that the ex-
pression (2.9) for the stress-intensity factor overestimates the destabilizing effect of the crack

interaction (Wong, 1990). Moreover, the two-dimensional approximation of a three-dimensional
problem further exaggerates the influence of the interaction. Thus, even though the Sam-

mis and Ashby (1986) model exaggerates the effect of the crack interaction, it simultaneously

overestimates the stabilizing influence of the lateral confinement. Thus, this model leads to a

contradictory set of conclusions. Even though their interaction is exaggerated, the cracks are

still predicted to grow in a stable mode at minute levels of lateral confinement. This apparent

paradox was further discussed in Wong (1990). The influence of the pore shape was shown to be

marginal in respect to the determination of the brittle-ductile transition. The stress-intensity

factors for a crack emanating from a vertex of a square hole (Hasebe and Ueda, 1980) are in-

deed larger, but not enough to affect the stability of the crack growth. The expressions for a

three-dimensional case of spherical cavities (Sammis and Ashby, 1986) do not change the basic

conclusions either. This prompted Wong (1990) to conclude that the "Sammis and Ashby (1986)

model is not appropriate for low-porosity rocks", and that "compaction mechanisms (including

pore collapse and grain rotation) are probably operative". However, it seems that a critical

evaluation of the pore model may furnish a new insight into the phenomenon and provide a

better estimate of the brittle-ductile transition.

The Isida and Nemat-Nasser (1987) computations were performed for a perfect, doubly periodic

pattern of two cracks emanating from a circular hole. Using these results to explain experimental

observations regarding the onset of unstable crack growth implies self-similar growth of defects

throughout the deformation process. However, as shown in Baant, et ,.1 (1989) and Banat

and Cedolin (1991) self-similar growth of defects represents a thermodynamically unstable path.

This is obvious on purely physical grounds as well. Assuming all distances between adjacent

defects to be equal (as implied by the so-called cell method based on doubly periodic patterns)

the minimum distance between two defects is obviously maximized. However, the interaction of

cracks and the formation of a cluster of cracks depends almost entirely on the min•i•mum (rather

than average) distance.

12
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Figure 2.5. Normalze stress-intensity factor vs. aspect ratio s/R, for several different values

of porosity f and two confinement ratios o..
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The already mentioned acoustic emission data on sandstones (Lockner, et at., 1992) provides

strong evidence that the AE signal clustering characterizes the deformation process from its ear-

liest stages. Most of the signals are strongly clustered indicating strong microcrack interaction.

This experimental evidence proves the existence of a basic flaw in the predictions of the cell

models which imply preservation of the periodicity of the defect pattern. The assumption that

the defect periodicity (microstructural order) perseveres into the latter part of the deformation

process dominated by the microdefect interaction, substantially overestimates the ductility and
strength and underestimates the onset of brittle instability. This, in fact, renders the cell mod-

el inadequate in qualitative and qua Atitative senses alike. It seems reasonable to acknowledge

the dominant role of the clustering, i.e., the spatial disorder of the microstructure. Since the
clustering at low density of defects depends on the smallest distance between adjacent cracks,

it is important to investigate the effect of the statistical distribution of defect distances on the

deformation pattern.

It is important to emphasize that the available experimental data clearly indicate that the onset

of the brittle-ductile transition is a statistical event. The emergence of the zone of large micro-

crack density depends not only on the porosity (first statistical moment of the void distribution),
but in a much more substantial manner on the higher, perhaps extreme, statistical momenta

defining extremes of the pore spacing. Thus, a study similar to one suggested by Horii and

Nemat-Naser (1986) for compact rocks may not provide a reliable estimate. In fact, it seems

that every deterministic model based on the average spacing of pores will underestimate the

onset of the unstable crack regime.

14



3.0 PHENOMENOLOGICAL DAMAGE MODELS FOR

BRITTLE DEFORMATION OF ROCKS

3.1. CRACK DENSITY DISTRIBUTION

Consider a porous rock specimen containing a certain distribution of microcracks accumulated

during a specific loading program from some initial state. Two questions of paramount impor-

tance are: a) what are the damage variables that adequately represent the degraded state, and

b) how does the elastic stiffness of a damaged rock specimen depend on the introduced damage

variables? Regarding the first question, various damage variables have been introduced in the

literature. Most of these models are of limited validity. If the current crack pattern in the rep-

resentative volume element is such that cracks are uniformly distributed in all planes, regardless

of their orientation, a scalar damage variable sLould be a natural choice. The corresponding

distribution of damage is referred to as isotropic. If cracks are nonuniformly distributed over

differently oriented planes, damage distribution and correspondingly the material response are

anisotropic. A distribution function p(n) (defined on a unit sphere) can be introduced to define

the directional dependence of the crack density. This function can be expanded in a Fourier-

type series of certain families of spherical functions (Kanatani, 1984, Onat and Leckie, 1988),

containing dyadic products of the unit vector and the Kronecker delta tensor. In addition to the

scalar (isotropic) term, the second-, fourth-, and higher even-order symi-retric tensors appear in

this representation. Therefore, the accurate representation of a complicated, highly anisotropic

orientation of damage by introducing some average tensor measure of damage is a difficult task

which in general requires introduction of second-, fourth-, and possibly even higher-order ten-

sors to represent the state of damage. An alternative description of damage anisotropy involving

stereological measurements and using a geometric probability approach is discussed by Wong

(1985).

In a general case of loading of initially anisotropic rocks, the planes containing extreme densities

of damage are not mutually perpendicular. Consequently, both the damage itself and its effect

on the material's effective stiffness are anisotropic. However, in the case of initially isotropic

brittle rocks subjected to proportional loading, the density of damage is maximum in the plane

perpendicular to the largest principal tensile stress and minimum in the plane normal to the

minimum principal stress. To study this oase of damage distribution, it seems reasvnable to

approximate its density distribution by ar oval (Fig. 3.1a). This type of damage distribution

can then be represented by a second-order tensor. If pi, denotes the components of the seccad-

order crack density tensor p, the density of cracks embedded in the planes with a normal n is

given by

p(n) = pi nkni , (3.1)

15



P

p0
Pl P

p1 i(a)

(c)

Figure 3.1. (a) Crack distribution within orthogonal crack famii;is modeled by a continuous
crack distribution of oval shape; (b) If the crack densities are the same, the oval shape becomes
spherical, giving rise to an isotropic damage distribution; (c) Crack distribution corresponding
to inclined crack families.
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depicted by the oval shape of Fig. 3.1a. Multiplying (3.1) with ninj and integrating over all

directions spanning the entire solid angle fl = 4w , and using

f nininkn~i dfl = 41~ii,+blj ibt"4 1

it follows that

5(Pj + jjPk6i) f p(,),i,• dfl. (3.2)

Above, iii denotes the Kronecker delta. The contraction i =j in (3.2) defines the first invariant

of the crack density tensor

Pkk = ; pF -) d4. (3.3)

Substituting (3.3) into (3.2), the crack density tensor can be expressed as

15 1
pu = g(Di - 3po i•). (3.4)

In (3.4)

PO=j p(n) dn (3.5)

is the density of afl cracks within a unit volume, and

2,, = j p(n),tinj df (3.6)

is a second-order tensor which shall be referred to as a damage tensor. The corresponding damage

distribution is orthotropic. If the distribution is isotropic, so that p(n) = po/ 4w = constant,

(3.6) reduces to Vi = 3P06'j , while the crack density tensor (3.4) becomes pi, = 4J.p06,j

The oval shape of Fig. 3.1a then transforms to a spherical shape (Fig. 3.1b).

In two-dimensional problems one has

J nkni d= ýN(5ksjl + 5il8jk + iiji k)

so that, in place of (3.4), the crack density tensor is given by
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pij = 2(Vij- 1PO 6q,). (3.4')

Higher-order tensors are needed to accurately represent the general cases of crack distributions,

especially when the damage is not orthotropic. For example, the fourth-order crack density

tensor P~jj, describes the crack density corresponding to planes with a normal n as

p(n) = Pijki ninjn&ljL . (3.7)

The second-order damage tensor is still defined by (3.6), while the fourth-order damage tensor

is defined by

Ajl= j p(n)njnjnknl dfl. (3.8)

The relationship between the fourth-order crack density tensor p and the second- and fourth-

order damage tensors 1) and 1) can be derived by a similar procedure as (3.4). It follows that

,5 ijkl = 3-5 tDkl - ýAijkl + lpo BijkI) (3.8')

where:

A=k ~(4kT'k + OkAT', + EikDj, + 6,,T',k + 6jkA' , + 85,(Dik)6

Bikl = I(Ikik + 6ikijl + hljk) .

In two dimensions, expression (3.8') is replaced by

8 31
Psjkl = ;~wjkl + 1 PO Bikl) - (3.8")

3.1.1. Second- And Fourth-Order Apprommationa

To illustrate application of the results from Section 3.1, consider first the case of two orthogonal

crack families, each having the crack density po/ 2 . In a two-dimensional analysis this crack

distribution can be represented by

18



where e defines an arbitrary direction through the point under consideration, and 6 denotes the

Dirac delta function. Substituting (a) into the expression for the second-order damage tensor

j= J p(n)nin dfl, (3.6')
"27

it follows that Vij = ½p0ijj . Hence, from (3.4') the crack density tensor is pj - -P0 6 ,J

so that within the second-order approximation (3.1), the distribution (a) is replaced by the

continuous distribution

1
P(O) = piininj = ijPo (b)

i.e., the circle of radius po/ 2w . Therefore, two orthogonal crack families with the same crack

densities are replaced by an isotropic homogeneous crack distribution.

A more accurate approximation is obtained using the fourth-order damage tensor. Substituting

(a) into (3.8), it follows that DmIII = *D2222 = po/2 , while all others components are equal to

zero. The tensor A has the components AI 1 1 = A22 22 = p0/ 2 , and A 1122 = A2211 = A1212 =

A 2121 = A 122 1 = A2112 = p0/ 6 , as the only non-zero components. Substitution into (3.8") and

4.41

.2

Figure 3.2. Second- and fourth-order continuous approximations of two orthogonal crack

families with the same crack densities.
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(3.7), therefore, gives the continuous fourth-order approximation

1IrpC9) = pkni••= •-Po (1 + 2cos4G). (c)

The second- and fourth-order continuous approximations (b) and (c) are plotted in Fig. 3.2.

A remarkable feature of the fourth-order approximation in this case is that, in addition to

dominating regions of positive crack density, two orthogonal regions of negative crack density

also occur, at 450 relative to the positive regions. This can even happen within the second-order

approximation, as will be discussed in the next subsection.

3.1.2. Negative Crack Density- Anticracks

The observed feature of negative crack density often occurs when the actual crack distribution

is approximater by a continuous distribution corresponding to sectnd-, fourth- or higher-order

damage tensors. To illustrate this, consider a single family of cracks whose normal is n = {0,1),

written in a symmetrical form as

P¢e) = 0( - 1 ¢+I - (d)

The continuous approximation of this distribution, corresponding to the use of the second-order

damage tensor, is

p() = po(0- 2 cos2). (e)

Derivation of the above expression is identical to one already explained in Section 3.1.1. The

graphical depiction of the second-order tensor approximation is shown in Fig. 3.3. The interest-

ing feature of this continuous distribution is emergence of the negative crack density over a part

of the range. This means that in the corresponding regions, actual cracks are replaced by rigid
lamella (the opposite of a crack) which are referred to as negative cracks or anticracks (Dundurs

and Markenscoff, 1989). The emergence of negative crack densities as a result of approximating

discontinuous distributions of cracks by continuous distributions represented by tensors, should

have been expected. A tensorial approximation (e) of a delta function implies the existence of

damage at angles other than 0 = v/2 and 9 = 3U/2. Consequently, negative crack densities

must be present to balance this nonexisting damage.

The regions with negative crack density and corresponding anticrack distributions, also occur

when the fourth-order approximation is used. In this case one has
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p(e) = j-po(1 - 2 cos20 + 2 cos40). W!)
2Ir

The plot of this density distribution, with its regions of negative crack density, is shown in Fig.

3.3 (dashed curve). The actual crack distribution is approximated much better than in the case

of the second-order tensor.
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Of course, in many cases the approximate continuous crack distribution does not contain regions

of negative crack density. For example, for two orthogonal crack families with crack densities P,

and P2 = Po - PI , where po is the total crack density, the occurrence of regions with negative

crack densities depends on the ratio Pi/P2 • If P1 = po/8 and P2 = 7 po/ 8 , the density

distribution according to the second-order approximation is

P(9) = Po(1- 3cos20)

Thus, the negative crack density regions occur again, as shown in Fig. 3.4a. However, if

PI = p0/3 and P2 = 2po/3 , the crack density distribution is

1 2
p(e) = _po(1 -_cos20)

showing no regions of negative crack density (Fig. 3.4b). The transition case is p1 = po/4 and

P2 = 3po/4, for which

p(O) = po(1 -cos2),

(see Fig. 3.4c).

-0.• 0 .1
0..

0 1-0.1 .05 0. 0.1 O.i 50.10

(a) (b) (c)

Figure 3.4. Continuous crack distributions corresponding to two orthogonal crack families of

different crack density raths.
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3.1.3. Rose Diagram

The same procedure applies in approximating an arbitrary, experimentally measured crack dis-

tribution by a continuous distribution, based on the even-order tensor measures. Consider for

example a "rose diagram" deduced from the actual measurements in tests performed by Hall-

bauer, et al. (1973), Fig. 3.5a. Using the second-order tensor approximation, the components

of the corresponding damage tensor are calculated from (3.6') with n = fcose, sine} to be :

VI = 0.061po , V 22 = 0. 93 9 po and V 12 = 0.111PO . Consequently, substituting these results

into (3.4') the components of the crack density tensor are computed to be: pl = - I 0.75po

P22 = 2-2.75po, and P12 = -L-0.4 4 po . Therefore, the approximate continuous crack distribution
is given by

p(o) = '.po(-0.75 cos2O + 2.75 sin 20 + 0.44 sinecosO)

i.e.'

1
p(e) - -po(1 + 0.22 sin2e - 1.75 cos28).

P2

P3

P4 0.

PI PS

-CA .5 .15

-0.2

-00.4.

(a) (b)

Figure 3.5. (a) A "rose diagram" deduced from actual test measurements. The representative

crack densities are: pi = ps = 1.8po/2w P2 = 14.4po/2w , p3 = 10.8pj/2w , and p4 =

7.2po/27 , where po is the total crack density; (b) Continuous second-order approximation for

crack density distribution corresponding to the above "rose diagram".

23



This approximate crack distribution is plotted in Fig. 3.5b. In addition to the dominating
regions of positive crack density, the regions of negative crack density are still present. The
scalar (isotropic) approximation is a circle of radius po/2w . This phenomenon, as yet not
discussed in the literature, deserves careful consideration. This is especially true since negative
crack densities actually do occur in analyzing situations such as those studied by Hallbauer, et
al. (1973).

3.2. REPRESENTATION OF DAMAGE

To illustrate a class of relatively simple representations of damage, consider an initially isotropic,
homogeneous and elastic matrix subjected to proportional loading. According to the experimen-
tal data on rocks (Hallbauer, et al., 1973, or Zheng, et al., 1991) the planes of extreme microcrack
density coincide with the principal planes of the stress tensor. Consequently, the specimen is
orthotropic on the macroscopic scale suggesting that the microcrack distribution can be repre-
sented by the second-order damage tensor (Vakulenko and Kachanov, 1971, Kachanov, 1980,
etc.)

V = pN + prM + pkK, (3.9)

where N = n ® n, M = mn@ m and K = k ® k are the dyadic products, and n, m and
k are the unit normals to three crack families. The scalar quantities p,, p, and Pk are the
corresponding crack densities.

Experimental determination of crack densities involves a micro-to-macro transition. This implies
the existence of a representative volume element centered at a point, which contains a statistically
valid sample of microcracks influencing the state at the considered point. Thus, if within a
material element of unit volume there are N parallel fat cracks with the unit normal n and an
average characteristic length a, the nondimensional crack density is defined as p. = Na3 . The
crack length a is calculated as an average characteristic length of all cracks within a representative
volume element, imbedded on planes with the normal n.

The minim• m prescription for representation (3.9), based in equal parts on intuition and ex-

perimental data, is to measure microcrack densities P., Pm and p, in three principal planes.
Naturally, there is no assurance that the estimate of microcrack density in an arbitrary plane,
interpolated using the representation (3.9), will coincide with the actual density. Indeed, the
representation of the damage distribution by the second-order tensor (3.9) amounts to assum-
ing a continuous crack distribution of the oval type shown in Fig. 3.1a, with appropriately
adjusted crack densities (preserving as constant the total number of cracks in a unit volume,
i.e. p, + pm + p = p, given by (3.5)). If p, =pm = pk = po , the oval shape becomes a
sphere (of radius 3p0 /4w). Therefore, within a description by the second-order damage tensor,
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the three orthogonal crack families with the same crack densities give rise to an isotropic damage

distribution (Fig. 3.1b).

A more ambitious alternative consists of measuring microcrack densities pi in a large number of

planes with different orientations ni, in order to form a "rose" histogram (Kanatani, 1984). In

this case the second-order representation (3.9), in which p., pm and Pk are the principal values,

and n, m and k are the principal directions of the second-order tensor Ei, p'n'®ni , may or may
not be a satisfactory approximation of the measured data. Geometrically, the approximation

(3.9) again amounts to replacing a more complicated distribution (such as the one shown in Fig.

3.1c) by an oval ("orthotropic") distribution.

Since N + M + K = 1 , (3.9) can be rewritten as

V = (Pn - Pk)N + (P. - pk)M + pkl, (3.10)

where 1 denotes the second-order unit tensor. Two special cases of (3.10) are of interest. If

Pk = pm 3 p, (transversely isotropic case), the damage tensor (3.10) simplifies to

V = (p. - p.)N + p,.1. (3.11)

In the isotropic case, p. = p. = pk = p, and (3.11) reduces to a spherical tensor V = pi ,

describing an isotropic damage distribution.

3.3. ELASTIC STIFFNESS TENSOR

In the considered brittle deformation processes, the state of the material is locally defined by

two state variables: elastic strain E. and the damage tensor V). The second of these variables is

often referred to as the internal or hidden variable. The elastic free energy i, is, therefore, 0. =

*.(E.,V) . This expression must be invariant with respect to any change of reference frame.

Since under the change of frame defined by an orthogonal transformation Q, the damage tensor

V becomes QVQT (superscript T denotes the transpose), the invariance condition requirm

the elastic free energy 0., to be an isotropic function of both elastic strain E, and damage V.

According to the well known invariance theorem (Spencer, 1971), an isotropic scalar function of

two symmetric second-order tensor variables can be represented as a polynomial of its irreducible

integrity basis:

(E' 1), (E, : E.), (E, E.), (V (V V), (V 2 : V)

(E. : V), (E. : V 2 ), (E.2 : V), (E. 2 V 2 ).
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In the case of brittle deformation processes, the elastic strains are typically infinitesimal. More-

over, it will be assumed that the stress is equal to zero when the elastic strain vanishes. Thus,

the elastic free energy is a quadratic function of the strain components

10C = ,h(E. : E,) + 12(E : 1)2 + n3(E. : 1)(E : ID) + n,(Ee2 :V)

+ s (E. 2 : ID2 ) + %(E. : V) 2 + (E )2: (3.12)

In (3.12), i•i (i = 1,2,3,4) are the constants or, more generally, the scalar functions of the
invariants of V. Using (3.12) and the expression or = Olbe/DEe , the stress-strain relationship

acquires the following form

a = 27, E, + 2n 2 (E. : 1)1 + n3 [(E. : I)I + (E. : 1)V] + •(•4 (E -P + P E,) (3.13)

+ is(E,. 2 D +1) 2 • E. ) + 2%•(Ee :D)D + 2Z((E. : V2 )V2 .

Above, (.) denotes the inner tensor product. Expression (3.13) is clearly linear in strain, admit.
ting the familiar form

L = CV: E,. (3.14)

The Cartesian components of the instantaneous elastic stiffness tensor L., written in the sym.

metricized form, art

=jlI i(Sik~ij + 6 s16 .,k) + 21n 6i,61s1 + 173ia(5,~P + Vijik,)

+ ý974(5ikPj + ADkEjI + $,,Pk + Vi,,&) (.52 (3.15)
+ m(6ikPVI9 i + P,9 PFk$jI + II*D ~i>,k + +.,P,1 6ik)

+ 2ft V )jkI + 2 qi lPp 2pPk1g.q.

In (3.15), 6,j denotes the Kronecker delta, i.e., the components of the second-order unit tensor
1. Repeated indices indicate summation. Expression (3.15) possees the obvious symmetries

.*Ski =7- 4 = £I, , as well as the self-adjoint symmetry Lf = £=,,, . Hence, the elastic
strain energy (3.12) can be written as

0, = i-,(P) : (E, 0 E,). (3.16)

Consider the case -ben the damage tensor is defired by (3.11). Since NjkNk = Ni, = UjR

and Nkk = nk-sk = 1, it follows that:

6J.,Pkl + PVbij = 2Pm Iijkl + A (A'?I + Ik)

26



i.kT'Di + PAk 6ji + 6
1 1Vjk + V~ig6 ,k = 4 ,Pm i'kI~k + 4Ap I',jkl

iik7Djq*DqI + VP,,Vqkij, + iilVjq*Dqk + IViq~qlbjk = 4p2 hI+42m+A)pi;k

'Dij7k, = PMn 'kl + PnAP (Iikl + Iijk1) + (A) 2 'jkl

M ptI?. +p(2p. + AP)AP (I4 ,ki + Iijk) + (2pm + Ap) 2(Ap)2 4,ki

where Ap = p,, - p. . The tensors:

I =kl = ( i + Ii1k), 'k = CAIk

ijk, = ,ij.kni k 'nlk, =, (3.17)

=ijII~inn + niTnkiji + 6S1U1'I* + UiT&I6jk), Iijk =ijn

combining dyadic (tensor) products of the Kronecker delta and a unit vector, form the integrity
basis for the fourth-order tensors tht are symmetric with respect to the first and second par

of indices (Kunin, 1983). The linear tensor space spanned by this basis is closed with respect
to the trace product, forming an algebra. For example, it can be shown that 1s : 12 = 12

I 3: I 3I s : 12 = 14 and Is : 12 = 14 . Hence, the stiffness tensor (3.15) can be written

as

Le ffni ( + n•p- + qspý,) 1V + 2(n2 + Mp- + qsp2 + qrpý) 12

+ [q3 + 2n1ppm + 2tpým(2pn + Ap)]Ap (IV + 14) (3.18)

+ 2[n4 + ,h(2p, + Ap)]Ap Is + 2[,M + l(7(2pm + &p)2](&p)2 I•.

3.3.1. Isotropk Damage

Consider first the special case of isotropic damage. In this case the damage is fully defined
by a single scalar variable, i.e., 1), = V Iii , where V) is the crack densi'y in each plane.

Geometrically, the oval distribution of Fig. 3.1a reduces to a spherical distribution. Since the

crack density does not depend on the orientation of the plane, p, = Pm = p and Ap = 0 , and

the stiffness tensor (3.18) reduces to a simple form
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z. = 2(71 + 4p+ 5p 2 ) I + 2(n2+ n3p+p + p4 ) 12 . (3.19)

Neglecting the term proportional to p4, i.e. taking M = 0, and introducing the notations:

7 = 715 = P0 , 774 = -2A 3.0
7 = n 6 = Ao/2, n73 = -) (3.20)

where AO and po are the Lamn elasticity constants of the undamaged material, (3.19) becomes

L - (1 -p) 2 (2  J I+ 0 I)(12 - p)2 C6
0 . (3.21)

In (3.21), C4° = 2#o I1 + Ao 12 is the stiffness of the virgin material. Defining W = (1 - p)2 as
the new damage variable, (3.21) takes the form of the familiar representation of the isotropically

degraded elastic stiffness, Z, = w Le,° , originally proposed by Kachanov (1958) and considered
at length by Lemaitre (1987, 1992).

In this case the damage distribution is fully defined by a single parameter p. This parameter can
be readily measured by comparing slopes of the unloading segments of the stress-strain curves.

3.3.2. Tr•n•versely Isotropic Damage

If the crack distribution is not isotropic, but approximated by a second-order damage tensor
V, the parameters qi defined by (3.20) should be accordingly adjusted, in concert witL. the
experimental data for the particular material and crack arrangement. In the sequel, however,
the material response will be approximated by the stiffness tensor (3.18) and parameters i.4 given
by (3.20). Hence

£e=(1- p,,) 2 (2p0 11 -I+ o 12) - (1 - p.)Ap \O (I + 4)(3 )
- [2(1 - p,) - ApJ&p 2po J1 + (Ap)2 \o 16

defines the elastic stiffness tensor of the considered transversely isotropic material, whose axis
of rotational symmetry is parallel to the direction n. In this cue two parameters define the
damage distribution: p,. and Ap = p. - p.-

If the crack densities are sufficiently small, rendering the terms containing the square of the

crack densities negligible, (3.22) reduces to

£e = L.0 ° - 2po (2,0 1V + Ao V2 ) -A p Ao (3 + 14) - 4Ap oI . (3.23)

Finally, ifall cracks are .mbedded in planes parallel to n ( p. = 0, Ap = -P,. ), (3.23) becomes
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ZP =f°-PM[4Mo V+2oA1 2 -_ 0 (13 +1 4)-4o4 i ] . (3.24)

3.4. ELASTIC COMPLIANCE TENSOR

To invert the elastic stiffness tensor, expression (3.22) must first be rewritten as

6

Ze = V I' , (3.25)
j=1

where the scalar parameters:

"a1 = 21o(1 - pm) 2  a2 = A0(- p.) 2

a3 = -1 0 (1- p..)ip , a4 = -Ao (1 - p.)Ap (3.26)

a5 = - 2po [2(1 - p,.) - Lp]Ap as = \o (Ap) 2

depend only on the material properties of the undamaged material (\o, po) and the densities

of the already accumulated damage. To invert the expression (3.25), i.e., to derive the elastic

compliance tensor M. £e I , it is convenient to change the basis 1i into Ji (i= 1,2, ... , 6)

through the linear transformation:

2 21 4+3r
1

z* ( 3J= I3 +Ir4+ I6) (3.27)

S 2 3= 61(211 V I 2+13+I444Is +6)

The elastic stiffness (3.25) then becomes

6

e= bi .1 . (3.28)

The new parameters bi in (3.28) are related to the parameters ai in (3.26) by:

b, =" (2a, + 3a2+ 2a3+ as+ae), + =a(-a6+2a3+ a+ a)

S= - '(t + 4( 2+ 3) (3.29)
12

bs = 1(2a, + as), 6 = al•
2

The =nverse of the fourth-order tensor (3.28) is (Kunin, 1983)
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6

me e = '-=• ci . (3.30)

The scalar parameters ci are related to parameters bi, defined in (3.29), by

c 1 ,. . } b= b2  b3 b4  1 1

Where A b2 -Q - b32+ Q

Returning to the basis Ii, the elastic compliance (3.30) becomes

6

me = x d, I' , (3.32)
i=i

where the coefficients di are:

1
d, = cc, = -(ci - CO)

2

43 = !(-ci + c2 - 2c3 - 2c4 + c6), 4 = (-c + c2 -c3 + c4 + cr) (3.33)
2 2

4=2(c - ce), d = -(3cl + c2 + 3c + c4 -4c 5 + c).
2

In the explicit component form, (3.32) reads

=jk, = dj(liklif + 6 ,iijk) + d 4 ,•k,

+ d3(S,,jknl + Ril& 6ki) (3.34)

+ 4d5(iknjl + ninkijl + li,•ink + ninlijk)

+ 41 niT&,knt&

In view of (3.29) and (3.31), q4 - c3 = -2(c3 + c4) ; hence, from (3.33), d3 = . Thus,
M. satisfies the reciprocity relation M.,kl = M ,kj , am well as the symmetry properties

Mijkl= MAkI = M.A4k , imposed by the symmetry of the stress and strain tensors. The tensor
(3.32), or (3.34), is the compliance tensor of the considered transversely isotropic material. The
relationships between the parameters d, and the elastic properties of the transversely isotropic

material are easy to establish, and will be derived later in the report (Section 4.3).
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3.5. APPLICATIONS

3.5.1. Uniazial Loading

Consider first a prismatic specimen subjected to uniaxial (tensile or compressive) stress a direct-

ed along the axis of rotational symmetry (Fig. 3.6). In this case oij = a ninj , where ni = 6C3

The corresponding strain is Eij = [(1 + v)ninj - v6ij]e , where v (= V13 = v23 ) is the Poisson's
coefficient in the (1,2) plane of elastic symmetry, while a and e are the lougitudinal stress and

strain. Application of (3.22) provides in this case the following stress-strain relationship

=ij (A ninj + B 6,i)e. (3.35)

I I

-_ I !

(a) (b)

Figure 3.6. (a) Planar distribution of cracks: all cracks have their normals parallel to the longi-

tudinal direction; (b) Cylindrical distribution of cracks: all cracks have their norm-It orthogonal

to the longitudinal direction.
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The parameters

A = (1 - p)2po (1 - p,) - Xo Ap] + 2v(1 - p.)[o (1 - p..) + Xo Ap] (3.36)

and

B = (1 - p.,)JAO (1 - p.) - 2v(4o + po)(i - pm)] (3.37)

serve as the repositories of the accumulated damage. Equating (3.35) with oij = o ninj , it

follows that B = 0 and At = o . The condition B = 0 provides the expression for the

Poisson's coefficient

1-pV (3.38)

where PO = )0/2(,o + po) is the Poisson's coefficient of the undamaged isotropic material.

Expression (3.38) requires further explanation. If p,. = 0 , (3.38) gives v = (1 - p,,)0,

which is the value of the Poisson's coefficient of the transversely isotropic material containing

cracks embedded in parallel planes normal to the longitudinal axis (Fig. 36a), and loaded in

tension. The axial compression does not activate the cracks in Fig. 3.6a, and material behaves

in compression as though it was undamaged ( v = it ).

If p, = 0, (3.38) gives v = (I - p,)- 1M, which is the Poisson's coefficient of the transversely

isotropic material with a cylindrical distribution of cracks (Fig. 3.6b), loaded in compression.

This crack distribution is activated only in the presence of a compressive longitudinal stress,

while it remains inactive when subjected to a longitudinal tensile stress.

From the remaining condition, At = u, it follows that the longitudinal Young's modulus is

o/e = A . In view of (3.38) and identity Ao = 2&o(po + Ao), (3.36) reduces to

A = (1B- pn)2 Bo, (3.39)

where Bo = 2po(1 + Q) is the Young's modulus of the undamaged isotropic matrix. When

p. = 0 , the longitudinal Young's modulus becomes A = Ba regardless of the existence of

longitudinal cracks, i.e., whether pm is equal to zero or not. If p,. = 0, the volumetric strain

during the compression test is

Bk =oL(-2 )V, (3.40)
32 1 -p,
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or, by introducing the initial bulk modulus xO = E0/3(1 - 2Iwo)

_.__1 2vo Pmn )a (3.41)

Ekk r. 1 - 2Io 1- p,,,

During a gradual increase of compression a (above some threshold value), pm increases corre-

spondingly. In the case when an appropriate damage law p,,m = p,n(c) is additionally provided

(from experimental evidence or by micromechanical considerations), (3.40) completely specifies

the volumetric strain-stress response. A qualitative stress-strain dependence, depicted in Fig.

3.7a, replicates the basic features of experimentally observed behavior during an unconfined

compression test ( a < 0 ) (see, for example, Jaeger and Cook, 1976). Volumetric strain is

reduced to zero at deformation states for which the crack density is p,, = 1 - 2vo

aG

3 ýO(compressive) 1 -80 (te•.mik)

(a) No

Figure 3.7. (a) Volumetric stress-strain response corresponding to eqn (3.41.) of text: a is the

compressive stress, and Ekk is the corresponding volumetric strain, r.0 is the undamaged bulk

modulus; (b) Stre.zs-train reponse corresIronding to eqn (3.49) of text: or is the magnitude of

the biaxial tension, and e is the corresponding strain, Eo0 and PO are the undamaged Young's

modulus and Poisson's ratio.
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3.5.2. Biaoial Loading

Consider next the biaxial tensile loading 011 = U22 = a in the (1,2) plane of elastic symmetry.

The corresponding stress and strain tensors are:

ai= (6ij - nin,)oa

E,• = [Sj - (1 + ')nnjje, 
(3.42)

where e is the magnitude of strain in the (1,2) plane, while P = 2V3 1/(1 - V12) is the corre-

sponding (effective) Poisson's coefficient. From (3.22) it further follows that

aj = (C ninj + D tj). , (3.43)

in which the accumulated damage is recorded using the parameters

C7 = -2(l - pn)[po (1 - p,,) + Ao Ap] - P(l - p,,)[2po (1 - Pn) A O AP] (3.44)

and

D = (I - p,.)[2(Ao + po) (1 - Pm) - PAO (1 - Pn)] (3.45)

Equating the firt of equations (3.42) with (3.43) it follows that D = -C , and "herefore

y- bbP._ o(3.46)
1-p

where t = 2Ao/( 4o + 2po) = 2&t /(1-&to) is the effective Poisson's coefficient of the undamaged

material. Substitution of (3.46) into (3.45) then gives

-p)2 E -(3.47)

The stress-strain equation (3.43), therefore, becomes

= (1 - p,,) 2  B (5,i -_ in). (3.48)
1 - hO

The (a, e) relation can now be derived from (3.48) in conjunction with (3.42), as

(1 - B . (3.49)

The (v,e) response is completely specifed by (3.49) and the appropriate damage law p.=

p,(a(). A qualitative stress-strain dependence is depicted in Fig. 3.7b.



4.0 MICROMECHANICALLY INSPIRED DAMAGE MODELS

FOR BRITTLE DEFORMATION OF ROCKS

4.1. ELASTIC BODY CONTAINING A PENNY-SHAPED CRACK

Expressions for the elastic stiffness and compliance can also be derived on the basis of microme-

chanical models. Consider a single penny-shaped crack embedded in an infinite isotropic elastic

solid, uniformly loaded at infinity. We decompose this problem, as usual, into two problems:

that of the body without a crack, loaded at infinity (0), and that of the body with a crack

appropriately loaded over the crack faces (*). Correspondingly, the local strain e can be written

as the sum of the strains belonging to two problems, i.e. e = eo + e" . The averaged strains

(C = ý fv e dV as V -- oo ) are decomposed in the same manner, c = e0 + •.. Let o, be

the remote loading and M. 0 the elastic compliance of the virgin material without the crack.

Introducing Me as the average elastic compliance of the body with a crack, and denoting by

M" the compliance mapping c to e , e = MI : cr , it follows that

me = ,A, 0 +,me.. (4.1)

The compliance M" , being the Hessian of the complementary strain energy 9" = ½M"
(a® a),

"M/ 82 ®to (4.2)

can be conveniently determined by observing that V is equal to the energy release associated

with the self-similar crack growth from zero to the current size a. As shown by Budiansky and

Rice (1973), this energy can be expressed as

j" da (4.3)

where M is the M-conservation integral of fracture mechanics. The M integral can be written

in terms of the J integral by means of a line integral along the crack edge I

M -Jo dt. (4.4)

Substituting (4.4) into (4.3), it follows that

1 ( (4.5)
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In the close neighborhood of the crack edge, the stress and strain states are a combination of
plane strain and antiplane shear. Thus, the energy release rate or the J integral can be expressed

in terms of the corresponding stress-intensity factors Kj (J = I, II, III) as

J= 1-o( K2)+IK2(4.6)

The expression (4.6) can be conveniently rewritten as (Sumarac, 1987)

J = CujKjK. , (4.7)

where

1
CIj = R [(1 - vo)6rj + vo61fl,1 611,J ]i

Consequently, substituting (4.7) into (4.5) gives

*"=j (fCIIKIK1 •)dA. (4.8)

13'

3

3 
2

Figure 4.1. Penny-shaped crack of radius a nd circumference 1: (1', 2', 3') denotes local crack

coordinate system, direction 1' being coincident with normal to crack plane m; angles 0 and €
define orientation of vector m relative to global coodinate system (1, 2, 3).
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For a penny-shaped crack the stress-intensity factors, written in the symmetricized form, are

(Tada, et al., 1985):

K 2 = (r)1/2K I ( ra) all

K,, = !(,G)1P-1 [(P,2 + oU2)Cos + (,,b + 030)3in"] (49)

K,,, = .(a)I/21- , [(F- 2 + o0)2in" - (0'3 + ao)oCs"]

where al. are the stress components in the crack coordinate system, and a is an angle defined
in Fig. 4.1. The stress component a'j1 is assumed to be tensile. Differentiating (4.9) it follows

that:

OKI_ = 2 O ra ) ' 2 61/ 6 j,1

L9Kj 2 /2c)/ 1s~

oK,, 2 t--- [(6, 6ii + 6.2 6ji),CO + (i6,j3 + Ii5j~gi)sia] (4.10)

"8"K, =27,2 ) 1 -- [(Ailij2 + i2Oijl)2k - (6'' + C )C]

If al is a compressive stress, Kr = 0 along with the right-hand side of the first expression in
(4.10).

The components of the compliance tensor M* in the local (crack) coordinate system are

M?,, 2 = • (di./• • ) d•. (4.11)

Since

OKI 8Kj = 1- b (OKI OKI OK,, OK )+ 1 OKIr, OKt (4.12)

Aiij haik'I 2o81 81

substitution of (4.10) and (4.12) into (4.11) leads to the following expression for the compliance
tensor
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=16 12_- 2 3{(6,6,16k1611) H(o,') + 13 2po3 2(2 - v)(4.13)
[( 6 0 6 j2 + 6,2 6bi)( 6k16 ,2 + 42611) + (6,6j3 + 6 i3 6b,)( 6 kI 6 I3 + 436,1)]}.

The Heaviside step function H(o'r 1) is introduced in (4.13) to simultaneously treat the possi-

bility of tensile and compressive stress components orb. In the local crack coordinate system,

the normal to the crack plane has the components

l= 6• (4.14)

The expression for the compliance tensor (4.13) thus becomes

- l1- F_ O {(*•,mWnmi,) H(ao1 )
1

2(2- 1o) [(,•6, 2 + 42,j)(m4612 + 6k2?nfl) + (mS6,3 + Ii3mn)(M'k613 + 4-Im)]} •

(4.15)

The expression (4.15) can be further rearranged as

M., 161- t

k,= 161- [(m"m:' v.km!) H(a'I) (4.16)

+ 2(21) (V,,mwm + mm'i j l + •iImjinr + Tnfljk *. -]

The required symmetry properties M! =,i, = . = !f• = MLi clearly hold. Using the

fourth-order tensors forming the integrity basis Ii, introduced in Section 3.3, expression (4.16)

can be rewritten in compact form as

I= 161-&[ 1 (4.17)

In (4.17), Iri' and 173 "7 are the tensor, deimed by (3.17), in terms of the components of

the normal m relative to the local crack coordinate system ( m'n = Eli ). If a,' 2 0 , (4.17)

further reduces to

161-VO 1 "n(2r p,
•'•k• = 3 2 - &t 2p, .,i, - o k),(.8

used by Krajcnovic and Fanella (1986).
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4.2. AVERAGING PROCEDURE

The compliance tensor expressed in (4.17) relative to the local crack coordinate system, can be

written in the global coordinate system using the coordinate transformation

Mij= - Mi.Qjo .0, 6 QJiQ6 ,

where Q is the orthogonal tensor of the transformation between the two coordinate systems.
Substitution of (4.17) gives

M? 16 1 -iO 1 3 M"161--0 a {2ik'7 +[(2_- Y)H(m T . .M)-2]If '}n (4.19)-•j =32 - Y0 2/po I

where:

I5jkl = •(6ikmj-rn + mmk6jl + 6imjMnk + miM16jk)1,6 M(4.20)
S= m imn m km 1

are the fourth-order tensors combining the Kronecker delta and the unit vector m, which is
expressed in the global coordinate system as

m = {coso Cost, cO sin#, sino).

If oh1 = mT. r - m > 0 (a is the stress tensor with compoLnUts in the global coordinate
system), (4.19) reduces to

M!,.h 161-Yo 1 a32 s161= ""1 3 _2sty 15i , -) (4.21)

Expressions (4.21) and (4.18) are equal, except that in (4.18) the components of the normal m
are expressed in the local crack coordinate system, while in (4.21) they are expressed relative to
the global coordinate system. The superscript m indicates that the reference is to the plaze of
the crack (Fig. 4.1).

Consider now the case of many cracks. If all cracks have the same normal m, the average
compliance (neglecting the direct crack interaction) is A* = NM* , where N is the number
of cracks per unit volume. Next, let the crack distribution be such that all normals to the crack

planes have the same angle 0 = constant. Neglecting direct interaction between adjacent cracks
(dilute distribution uf cracks), the average compliance is
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i r m SO (4.22)

N161-z, 12131 2- Lo2o 1 ( 2 Ismd -6j - •d

In (4.22) the stress state is assumed to be such that mT . a • m > 0 for all m, allowing

substitution of (4.21) for the components of the compliance tensor .;41

In general, for an arbitrary angle #

",m.m = 6,v63icos20coS20 + 5,2642coS2 sin2 0 + i, 3ij3zin2q,

+ (Oil6j2 + ii 2 5jl)cos 2osmnncosO + (6iljs3 + 606il)sinWcosOcosO (4.23)

+ (5 26ij3 + 106, 2 )sin-coS.ing •

Consider first an important special case for which 0 = 0. The normal m has components

{cos , sine, 0). In this case (4.23) reduces to

"mjm1 = SgiSj, cose 0+ 5i26j2 ain2t + (6il,,2 + 6S02j) sinecosG. (4.24)

Hence

,mjm df = '(Aillji + 60652) = 1(0,, - &363). (4.25)

Introduce the vector n, normal to m, having the components

j = 10 (4.26)

in the global coordinate system. The integral (4.25) can be accordingly written as

j0 mi dO =w(A, - ijufl, (4.27)

such that

foJ2D1 dU = P[2(5,ki, + S,,lk) (4.28)

- (likunv4, + 1&i1kijl + f~Unjnk + T&,11151 )].

Using the fourth-order tenson of the integrity basis I• introduced in (3.17), the integri. (4.28)

can be rewritten in compact form as
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Io"' d= -i(I S - 1"). (4.29)

0

To evaluate the integral

o9= mimkMl do, (4.30)

expressions of the type (4.24) are substituted for products mimj and mkmI. Performing the

intergration, one obtains

o I = j[3(8j6j16kI6,1+ 6 i2682 6 k2 6 t2)08

+ ( 6 6
326k16 12 + 6i1 6ij2,426 1 * 6 i26 j1b6 !k6 12 (4.31)

+ 6 , 6 •2 6k'11 + 6 i1 6 ,ljk2 + C226 k2416 11)] •

After a somewhat delicate rearrangement of terms, (4.31) can be cast in the following remarkably

simple form

2i,, l do = j[(6i - ni,)( 6 k, - ni,) (4.32)

+ (6jk - nfjk)(Sit - 'nin) + (6ki - n.nk)(161 - n•in)J,

or

S"••W do = j[(8.,j + il.ik) + i,,6k - (Iinkn, + •iR3 kl) (4.33)

- (E6iknh + ninij 1 + iiini, + nlijk,) + 3(niv )kni)].

Utilizing the fourth-order tensors forming the integrity bads (3.17), (4.33) can be written as

o1" do -- 4(2 1V + 12 _ 13n _ 14n - 4 IS + 3 Is"). (4.34)

Finally, the average compliance due to the considered crack distribution is derived by substituting

(4.28) and (4.33) into (4.22)

21-Yo 13 2 -L•o 2Mo w [(4 - zo) (bklil + 6 lijk) - Vo Iiak + ft (,nka + ink) (4.35)

- (2 - vo) (ikn•.t + 1inkii, + 6itnink + l•iniljk) - 3yo (niniinki)] .
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The nondimensional scalar quantity w = Na3 , originally introduced by Budiansky and O'Connell

(1976), represents a micromechanical damage parameter (measure) defining the density of the

considered crack distribution within the representative volume element. Note that A* is linearly

proportional to w, i.e. -- wM" , where M" is the constant tensor given by

MO=21-y° 1 [ 2(4_-vo) V _VO12 + VO(i3. + I")_-4(2_-,o) iln -3voi6n]
321- o 1;Z

Finally, if the crack distribution is dilute and isotropic, the average compliance is

"= cosodo dO . (4.36)

By using (4.20) and (4.23) it can b: shown that:

f2mw/2 Is- cos d dO = 4w-i

01ra/2 
(4.37)

r- cos~id46dO = 41r(2Vi+1 2 ).
fo f-/' r4/22I5

The average compliance is 4erived by substituting (4.37) into (4.21) and (4.36)

M 1-- o2 [2(5- j )I'-ao I2 ]. (4.38)
45 - IO 5; [2

It is easily shown that (4.38) produces the compliance components identical to those given by

Equation (20) of Horii and Nemat-Nasser (1983).

4.3. EFFECTIVE COMPLIANCE TENSOR

The compliance tensor of the undamaged, isotropic and homogeneous elastic matrix is

0 = 1 1 + gi16 ,k) - t £6i,].St'jkl 2juo 2 1 +v &"

Using the basis I' introduced in Section 3.3, above can be rewritten as

me0 11 12 (4.39)

The overall (effective) compliance is derived by superposing (4.39) and the expression for the

average compliamce A*. If the crack distribution is isotropic, i.e. if A* is defined by (4.38),

the overall compliance become
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FO-( I y /J2) (4.40)

where the damage-dependent shear modulus and Poisson's ratio are given by:

45(2 - ft)
" T 45(2- vo) + 32(1- vo)(5- vo)w4.4

45(2- vo) + 16(1-v8)w (4.41)
T= 45(2- vo) + 16(1- vt2)(10- 3vo)w MO.

If the crack distribution is of the type shown in Fig. 3.6b, such that (4.35) applies, it follows
that

1  4 (4- vo)(1- O) 1

tjk 21 [1+3 2 o- t]o(6k6ji + 6it6jk)

o+ 2 o(- vo) 16 j 6 k + w [2( 6•jnki + ninifj 6k) (4.42)-[ o+3 2"'o w] •32_- o

- (2 - vo) (6 ikninr + nink6jl + 6,lnjnk + ?n&,6 jk) - 3vo (nijnjk)]}.

Expression (4.42) represents the compliance tensor of a transversely isotropic material whose
plane of symmetry is normal to the direction n. Indeed, (4A2) can be rewritten as

6

me= Ci Ji, (4.43)

with the obvious expressions for the parameters Ci. In terms of the elastic moduli and Poisson's
ratios in two orthogonal directions, the parameters C, are:

l+,.+ 1 V

C= ,C4= C (4.44)

1+29V 1 1cS = -C 6  lE+ +,

Here, E is the Young's modulus in the plane of isotropy and B' is in the direction normal to
it. Also, v is the Poisson's ratio characterizing transverse contraction in the plane of isotropy
when tension is applied in the same plane, while V is the Poisson's ratio obtained when tension

is applied normal to the plane of isotropy. pi' is the shear modulus for any plane perpendicular
to the plane of isotropy (Leklmitskii, 1981). These five material parameters can be derived from
(4.44) in terms of the parameters Ci as:
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E 1 C2C] ý+ C= CI + C2
E 2  C2 + C3

C 1+C 2 +2C 3 +Cs+Cs' C + C2 + 2C3 + C5 + C6

_ 1
JA' I C=(4.45)2C1 + Cs

4.4. EFFECTIVE STIFFNESS TENSOR

To derive the expression for the stiffness tensor, being the inverse of the compliance tensor (4.42)
from Section 4.3, it is convenient to use the fourth-order tensors of the basis Ji, defined by (3.27).
In this basis, the tensor (4.35) takes the form

= 32_ 1 w [ (2-- vo) (jlR._.j 2 ,)+2J 5f +(4- Yo)J6  ]. (4.46)

3 2 - Yjj 21jo

Since:

II = Ji + Js + Js

12 = 1(3 V _ j 2 -3 j3 + j 4 )
2

the initial compliance M4. 0, givea by (4.39), can be expressed in terms of the J' basis. The

overall compliance M. = M.0 + M , consequently becomes

6

me -- _ . , (4.47)

where:

2-i 4= _ _4__
1 ( +) + 3 lb) W C2 -= f

C= tC4 =-- f (4.48)
=2(1+ &o,) - 2(1+ vo)'sl+8(1- 3t C +41- ""(4-

3(2 - o)(2)- vo)

The tensor representation (4.47) has the explicit inverse

6

£Ie = 4-=2po F, bi V (4.49)
i=1
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where

-1 32 -3 I I} (4.50)
(bl"'"b}=(Z'- ' A' A 'c5 '

and 4 - ci - 4 - 4 + cl • usig the transformation rule (3.27), (4.49) can be expressed in

terms of the original IV basis as

6

le = 2 po j a, V. (4.51)

The coefficients ai are related to coefficients bi by:

a, = b6 , a2 = 1(b- b2 - b6 )

22a3 = 1 (-bi + b2 - 2b3 - 2b4 + b6) , d4 -- 1(-bi + b2 - b3 + b4 + We (4.52)

a5 = 2(bs - b6 ), 6 = 1(3bi + b2 + 3b3 + b4 - 4bs + b6 )

which is identical to the relationship (3.33) existing between the coefficients di and ci. In the

component form, (4.51) reads

si=2 2gio [ a, I(Eiklit+ 6t1&jk) + £2 6ij~kl

+ a3(6,jjnkn + Rinji6k) (4.53)

+ as' (5,,iknia + T'inkijI + EiIRjnk + RmnliE,k)

+ G Y4,ikl ]

Expression (4.53) is the exact inverse of (4.42). If the damage parameter w is sufficiently small

so that the quadratic and higher-order terms in w can be neglected, coefficients of (4.53) simplify

accordin:y and become:

a,=1_ 4 (1- z)(4- t)
3 2- o

VO 2 V(1 -At) S,2)
a2 -£ 2o 3 (24- v-)(1--2o)2 (15- 20o+

3 (2 It)(1 - tt) (7- 16vo + 4YO) w (4.54)"3 =04=3 (2 - v-)(i --2o)2

as (I - VO) W
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2 vo(1- Vo) (13- 2yo) w
GE- 3 (2 - vo)(1-2vo)

It is easy to prove that for this case the components of (4.53) are identical to the components of

the stiffness tensor obtained by Nemat-Nasser and Hori (1990) (their Equation (5.l1b)). Also,

from (4.53) and (4.54) it clearly follows that le = Zeo + w L , where

[ 2o(a + V' )12++a3 (13 +1 4)++asI'+ aE6  (4.55)

and 0 = 2po(I' + -- 12)
1-2 ma

4.5. AXIAL COMPRESSION OF A LATERALLY CONFINED SPECIMEN

Consider a cylindrical specimen subjected to an axial compression a + p and lateral confining

pressure p. The stress difference (between axial and lateral stress), commonly used in rock

mechanics, is a. The state of macroscopic stress is therefore

aj =- -(p ij + a nintj) , (4.56)

where nj = &3 is a unit vector collinear with the longitudinal axis of the cylinder. Even

though the applied tractions are compressive, local tensile stresses may arise in the vicinity of the

microstructural inhomogeneities (pores, pre-existing cracks, rigid inclusions, etc.). Introducing

the influence tensor 5 of the given microstructural inhomogeneity (HEIl, 1967), one can write

the local stress tensor as 4' = B : a , where B depends on the location and topology of the

particular defect. At a low level of lateral confinement the local tensile stresses may suffice to

nucleate new microcracks and propagate existing ones. The ensuing deformation is brittle, i.e.,

the inelastic deformation is directly related to the formation of new internal surfaces (nucleation

of new cracks and growth of existing ones) in the specimen. Assuming that these microcracks

develop in planes with normals perpendicular to the longitudinal (axial) direction n (Fig. 3.6b),

the initially isotropic material becomes transversely isotropic. In the simplest representation,

the local tensile stress driving the microcrack growth (Fig. 4.2), can be written as

610i = a (6,, - inj), (4.57)

where the magnitude of the local tension o" depends on the microstructure, i.e., on the defects

such as porosity or void distributions, and the stress difference o. The influence tensor B

corresponding to the local stress given by the simpi;ed representation (4.57) is not unique.

One of its possible representations, satisfying e = B : r , is B = a,[I - 1(1 + P)(12 - 13)i,

where ct =o/or ad P=o/p.
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The strain resulting from the crack openings due to the stress (4.57) is

S.?= .•,,,r , (4.58)

where MA?,j1 is the compliance tensor, given by (4.35). Hence,

ej = 8(1 - o) w 1 (6i - ninj) . (4.59)

The strain due to macroscopic stress in the material without damage (i.e., with the initial, frozen

microstructure) is

Coj,= M9o'ka , (4.60)

i.e., in view of (4.56) and (4.39),

tj= 2 + 10o- (1 - 2yo)p] 6,, - a UR }. (4.61)

Defining the total strain as =j = ej + e0j* , it follows that the longitudinal strain is

1 [a + (1 - 2v0)p] (4.62)
'(4.62)

where Bo = 2po(1 + v&) is Ae initial Young's modulus of the undamaged material. The total

volumetric strain is

1 16 1- __.ekk 1 0 woO" - (3p +O)]. (4.63)

In (4.63), Bo = Eo/3(1 - 2yo) is the bulk modulus of the undamaged matrix. Consequently,
as a result of the introduced simplifications, the longitudinal strain (4.62) it not influenced by

the damage. This is consistent with the assumption that the components of the crack-induced

displacement discontinuities in the direction parallel to the specimen axis are zero. On the other

hand, the non-zero strain components ei = 42 contribute to damage-affected volumetric

strain, given by (4.63). With the additionally provided relationship defining the variation of

the parameter wo" as a function of increasing stress or and pressure p, (4.63) suffices for the

determination of the volumetric strain-stress response. The qualitative dependence is as shown

in Fig. 3.7a.
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If the specimen is not confined (p = 0), the Poisson's coefficient Va in the (1,2) plane of elastic

symmetry due to compression in the direction of the z3 axis ( " - E33 - -- 2 /E33

½(I - �'kk/e33) ) follows from (4.62) and (4.63)

V + - )W (4.64)

Again, if the relationship between woa and the applied stress is known, (4.64) specifies the change

of the Poisson's ratio V" caused by continuing degradation, defined by the damage parameter w.

* G*

a a
4- -

Y* *Y

Figure 4.2. Local tensile stress o (which drives the microcrack growth) arises in the vicinity

of the pore.
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5.0 SUMMARY AND CONCLUSIONS

The objective of this report was to summarize on-going research directed towards the formulation

of a rational continuum model of a porous rock containing a large number of microcracks. The

ultimate goal is to provide a versatile physically-based model suitable for large-scale, finite

element-type computations. There is a considerable body of evidence that a variety of important

features of rock deformation (such as dilatancy, compaction, brittle-ductile transition, etc.)

cannot be modeled without consideration of the rock fabric and its influence on micromechanical

processes. On the other hand, purely micromechanical models are computationally inefficient

and, therefore, not suitable for such purposes.

In view of the program objective, the only rational solution is to develop a micromechanically-

inspired constitutive model. The proposed model will retain the form and framework of con-

ventional phenomenological theories. The details of the model, however, such as the selection

of mathematical representations of the damage parameters, forms of evolution laws, etc., will

be constructed in concert with micromechanical considerations of micromechanisms observed

experimentally in real porous rocks (sandstones and limestones). Consequently, the material

parameters of the model will be experimentally identifiable. However, their numerical values

will require some minimal amount of curve fitting. An illustration of micromechanical modeling

was presented in Sections 2.2 and 2.3.

The present study is at the stage where it focuses on brittle response by examining the ge-

ometry of microcracks and their influence on the response. Sections 3.1 and 3.2 concentrated

on the physical description of damage defined by frictional crack surfaces in planes of various

orientations passing through a material point. Various approximations of a typical damage

distribution in porous rocks were illustrated in Sections 3.1 and 3.2. It is unlikely in real ap-

plications that a detailed crack density distribution will ever be available. Thus, it was argued

that the second-order tensor damage parameter approximates the expected crack density distri-

bution with sufficient accuracy in the case of proportional loading. The case of non-proportional

loading is scheduled to be addressed in the sequel to this study.

Rigorous, novel, and elegant derivation of the effective (overall or equivalent) stiffness and conm-

pliance tensors was presented in Sections 3.3 and 3.4. The formulas for the exact inversions

of these tensors were derived to enhance intended computational efficiency. Particular cases of

isotropic and transversely isotropic damage distributions were derived not only as an illustration

but more importantly as a guide to the determination of material parameters and the damage

evolution law. Applications to the ci.se of uniaxial and biaxial stress (compressive and/or tensile)

loadings were illustrated in Section 3.5.

Section 4.0 provided add~tional guidelines in relating the proposed model to the physics off the

process on the microscale. The emphasis was again on the enhancement of tensor manipulations

of the stiffnees and compliances. At each step the model constants were related to measurable
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material parameters (see expressions (4.45), for example). The example in Section 4.5 provided

an illustration of how the proposed model can be used in estimating accumulated damage during

a given loading program. In addition to acoustic emission tests, this will provide a valuable means

for determining damage evolution laws and/or the kinematics of the "damage surface".

In summary, the present model provides a general framework for a rational, micromechanically-

inspired, continuum model for a porous rock. The model provides a novel viewpoint of the entire

class of damage models. For the first time, clear arguments have been provided to facilitate

the selection of the simplest (yet sufficiently accurate) representation of damage. Microcrack

distributions, damage measures (parameters), and material parameters are firmly related to

each other allowing for unambiguous experimental identifications of the quantities needed for

modeling.

At this point the analysis is limited to purely brittle deformation processes and proportion-

al loadings. Incorporation of ductile effects and the transition to rate models (necessary for

non-proportional loadings) will be addressed in the sequel to this study and when requisite ex-

perimental data become available. In order to define the damage evolution lzw(s) and, perhaps,

define a "damage surface", it will be necessary to carefully design an experimental program

combining measurements of elastic moduli in three orthogonal directions along with acoustic

emissions measurements. These experiments will have to be performed at several confining

pressure levels for different loading programs in order to develop a reliable basis for the deter-

mination of the evolution law(s). A major problem, of course, is our inability to measure the

microcrack density at each point directly. Thus, it becomes necessary to relate the microcrack

distribution to macrostiffnesses, as was done in this report, and infer the former from the latter.

The importance of this task is not evident from the problems considered in this report. However,

in the case of non-proportional loading it will be necessary to know the orientation of cracks in

order to estimate the discontinuous changes in elastic moduli associated with the changes in the

signs of the normal stresses.

A few simple examples were used to mustrate the remarkable versatility and efficiency of the

model in replicating the salient trends of the considered phenomena. Even in its present state of

development the proposed model allows for a simple identification of the materia! parameters and

their experimental measurement. In particular, it appears possible to determine the approximate

distribution of damage densities by measuring the components of the stiffness tensor. The

indenter test proposed by Zarks and Frelat (1977) could be part'cularly appropriate for this

task.

The most important conclusion derived from the work reported herein is that it is indeed pos-

sible to complete this task and formulate a constitutive theory for rocks which will satisfy all

requirements of efficiency and accuracy. The general form of this theory has already been put

together in this report. However, a significant effort must still be mounted in order to achieve

the ambitious goal of this overall research project.
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